## Combinatorial Networks Week 5, Wednesday

## Turán's Theorem

- **Definition.** Let H be a fixed graph, we say G is H-free if G has NO any copy of H.
- **Definition.** ex(n, H) is the maximal number of edges in n-vertices H-free graphs.
- Mental's theorem.  $ex(n, K_3) \leq \lfloor \frac{n^2}{4} \rfloor$ , and the unique extremal graph is  $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ .
- Theorem.  $ex(n, K_{2,2}) \leq \frac{1}{2}(n^{\frac{3}{2}} + n)$ .
- **Definition.** Turán graph  $T_r(n)$  is a complete r-partite graph, where the sizes of parts differ by at most 1.
- Note.  $T_2(n) = K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ .
- Turán's Theorem. (1941)  $T_r(n)$  is the unique  $K_{r+1}$ -free graph on n vertices with the maximum number of edges. Thus  $ex(n, K_{r+1}) \approx (1 - \frac{1}{r}) \frac{n^2}{2}$  (with equality if and only if r|n).
- Proof 1 of Turán's Theorem. By induction on r.

Base case, r=2, which is Mental's theorem.

Inductive step, assume it is true for  $K_r$ , consider a  $K_{r+1}$ -free graph G with n vertices and the maximal number of edges. Pick a vertex u with maximum degree d = d(u), let S = N(u), T = V - S, then S is  $K_r$ -free on d vertices. Let G' be obtained from G by deleting all edges in T and adding all missing edges across S and T, then G' is still  $K_{r+1}$ -free.

$$e(G) \le e(G')$$
.

We claim:  $e(G) \ge e(G')$ .

e(G') = e(G) - e(T) + # missing edges between S and T in G.

- (1)  $\sum_{t \in T} d(t) = 2e(T) + e(S, T) \le d(T)$ .
- (2) #missing edges between S and T in G = |S||T| e(S,T). so

$$e(G') = e(G) - e(T) + d(T) - e(S, T)$$
  
 $\geq e(G) - e(T) + 2e(T) + e(S, T) - e(S, T)$   
 $= e(G) + e(T)$   
 $\geq e(G)$ 

Thus e(G) = e(G'), e(T) = 0 and for any  $t \in T, d(t) = d(u), e(G) = e(S) + |S||T| \le e(T_{r-1}(d)) + d(n-d)$ , this function is maximized when  $d \approx \frac{r-1}{r}n$  or say the r parts are of size differ by at most 1, so  $G = T_r(n)$ .

• **Proof** 2 of Turán's Theorem. Consider  $K_{r+1}$ -free graph G on n vertices, label the n vertices as 1, 2, ..., n and consider a probability  $p_i$  for each i such that  $\sum p_i = 1$  and  $p_i \geq 0$ , change the values of  $p_i$  to maximize

$$P = \sum_{ij \in E(G)} p_i p_j.$$

Claim: If  $ij \notin E(G)$  and  $p_i, p_j > 0$  then one can change

$$\begin{cases} p_i \to 0 \\ p_j \to p_i + p_j \end{cases}$$

or

$$\begin{cases} p_i \to p_i + p_j \\ p_j \to 0 \end{cases}$$

to increase P.

**Proof of claim.** Let  $S_i = \sum_{k \in N(i)} p_k$ ,  $S_j = \sum_{k \in N(j)} p_k$ , we assume that  $S_i \geq S_j$ , change

$$\begin{cases} p_i \to p_i + p_j \\ p_j \to 0 \end{cases}$$

then  $P' - P = p_j S_i - p_j S_j = p_j (S_i - S_j) \ge 0$ .

Now we keep applying the above claim. When stop, we arrive on vector  $(p_1, p_2, ..., p_n)$  such that the vertices i (with  $p_i > 0$ ) form a clique Q. Since G is  $K_{r+1}$ -free, we have  $|Q| \leq r$ . Consider

$$P = \sum_{ij \in E(G)} p_i p_j = \frac{1}{2} (1 - \sum_{i \in V(Q)} p_i^2),$$

this achieves maximum if and only if  $p_i = \frac{1}{|Q|}$  for any  $i \in Q$ ,  $P = \frac{1}{2}(1 - \frac{1}{|Q|}) \le \frac{1}{2}(1 - \frac{1}{r})$ . But when  $p_1 = p_2 = ... + p_n = \frac{1}{n}$ ,  $P_0 = \frac{e(G)}{n^2}$ , thus  $\frac{e(G)}{n^2} \le \frac{1}{2}(1 - \frac{1}{r})$ , which means  $e(G) \le \frac{n^2}{2}(1 - \frac{1}{r})$ .

- **Definition.** An independent set is a subset of V(G) which induces NO edges in G.
- Definition.

$$\alpha(G) = \max_{I = \text{independent set in } G} |I|.$$

• Theorem. For any G = (V, E),  $\alpha \ge \sum_{v \in V} \frac{1}{d(v)+1}$ .

**Proof.** Label vertices as 1, 2, ..., n, consider a permutation  $\pi$  on [n].

We say vertex i is  $\pi$ -dominating, if for any  $j \in N(i), \pi(i) < \pi((j))$ , i.e. i precedes all its neighbors in the ordering given by permutation  $\pi$ . Let  $M_{\pi} = \{\text{all } \pi\text{-dominating vertices } i\}$ .

Fact 1.  $M_{\pi}$  is an independent set of G.

**Fact** 2.  $\alpha(G) \geq |M_{\pi}|$  for any  $\pi$ .

Consider a permutation  $\pi$  uniformly at random, thus,  $|M_{\pi}|$  is a random variable and by fact 2, we have  $\alpha(G) \geq \mathbb{E}[|M_{\pi}|]$ .

Let  $A_i$  be the event that  $i \in M_{\pi}$ , so

$$I_{A_i}(\pi) = \begin{cases} 1, i \in M_{\pi} \\ 0, \text{ otherwise.} \end{cases}$$

Then  $|M_{\pi}| = \sum_{i \in V(G)} I_{A_i}, \mathbb{E}[|M_{\pi}|] = \sum_{i \in V(G)} Pr(A_i).$ 

Fact 3.  $Pr(A_i) = \frac{1}{d(i)+1}$ . Proof of fact 3.

$$Pr(A_i) = Pr(i \text{ is } \pi\text{-dominating})$$
  
=  $Pr(\pi(i) \text{ is minimum in } i \cup N(i))$   
=  $\frac{1}{d(i)+1}$ 

Therefore,  $\alpha(G) \geq \mathbb{E}[|M_{\pi}|] = \sum_{i \in V(G)} Pr(A_i) = \frac{1}{d(i)+1}$ .

• Corollary. If G has n vertices and m edges, then

$$\alpha(G) \ge \frac{n^2}{2m+n}.$$

**Proof.** Exercise.

• **Proof** 3 of Turán's Theorem. For  $K_{r+1}$ -free graph G, consider its complement  $G^c$  with  $m = \binom{n}{2} - e(G)$  edges,

$$r \ge \alpha(G^c) \ge \frac{n^2}{2m+n} = \frac{n^2}{n-2e(G)}$$

which means  $e(G) \leq (1 - \frac{1}{r})\frac{n^2}{2}$ .